If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-14x-10=6x-1
We move all terms to the left:
x^2-14x-10-(6x-1)=0
We get rid of parentheses
x^2-14x-6x+1-10=0
We add all the numbers together, and all the variables
x^2-20x-9=0
a = 1; b = -20; c = -9;
Δ = b2-4ac
Δ = -202-4·1·(-9)
Δ = 436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{436}=\sqrt{4*109}=\sqrt{4}*\sqrt{109}=2\sqrt{109}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{109}}{2*1}=\frac{20-2\sqrt{109}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{109}}{2*1}=\frac{20+2\sqrt{109}}{2} $
| 27=5y+4y | | 2(12x+8)+3x=146 | | 7b+b=0 | | 2y-12=20y-10-8y | | 3x+8x-4x=67 | | 6x-5-5x+3=4(1+1/4x) | | x^2+3x-78=0 | | -8v-12v-18=-62 | | 8v-12-18=-62 | | (21-x)/4=x/8 | | 3u=2u=20 | | A=6(15r-14) | | (3x-8)^4*(x-1)^3*(x+1)=0 | | 8x+52=32 | | -8+2w=-14 | | 8x-20=-2x | | 2(x-2)-2x=3x-(x-2) | | 4^(2n-3)=3^(n) | | 5/(n+6)=10/n | | C=5z+20 | | 2z-11+2z-14+3z=180 | | 5x-18-8x-5=180 | | -24=4(-4)-6x | | 2u+2u-6+u+20=180 | | 73+73+x=180 | | 17=6c-11 | | 6.3w-6=-1.5 | | p-19+2p-20+33=180 | | t+15+2t-17+2t=180 | | -3(2x-5)-4=2(-4x-6) | | x^2-35=3x | | x+4=20-x-x=4-3 |